Classroom Presentation and Interaction with Tablet PCs

Richard Anderson & Steve Wolfman
Department of Computer Science and Engineering
University of Washington

Oct 17, 2003 HP Mobile Technology Conference

Educational Technology

...in the winter of 1813 & '14 ... I attended a mathematical school kept in Boston...On entering his room, we were struck at the appearance of an ample Black Board suspended on the wall, with lumps of chalk on a ledge below, and cloths hanging at either side. I had never heard of such a thing before. [Samuel J. May, 1855]

Oct 17, 2003 HP Mobile Technology Conference

Classroom Presenter

- Initial problem
 - Develop a distributed presentation space for use in a distance learning class
- Later
 - Many of the same issues / challenges in large lecture classroom

Oct 17, 2003 HP Mobile Technology Conference

Background studies

- Studied UW CSE PMP
 - Interviews, Surveys, Observations
- Greatest pain in distance course
 - Presentation environment
 - "PowerPoint is a pain for the same reason it's a pain in a non-distance course, the slides impose a rigid structure on the lecture and make it more difficult to adjust to the interactions that occur during it."
 - "PowerPoint sucks the life out of a class."

Oct 17, 2003 HP Mobile Technology Conference

Important features

- Wireless
- Integration of High Quality Ink and Slides
- Multiple views
- "Performance UI"

Oct 17, 2003 HP Mobile Technology Conference

Large lecture classes

- Challenges
 - Maintaining attention
 - Communication
 - Feedback from students
 - Flexibility in presentation materials
 - Conducting activities in class

Oct 17, 2003 HP Mobile Technology Conference
Classroom Deployments

- Since summer 2002, it has been used in about 35 CSE courses
- Intro programming courses to masters' courses
- Used at UVa and University of San Diego starting spring 2003.

Results

- Observation, instructor comments, some system logging
- Positive reception from instructors
 - Sustained use of writing through full term
 - Wide range of use
 - Highlighting / Attention
 - Derivations
 - Recording comments
 - Diagrams
- Positive reception from students and instructors
 - Positive comments and repeat use by instructors
 - Student surveys
 - Student comparison vs. PowerPoint

<table>
<thead>
<tr>
<th></th>
<th>less</th>
<th>no change</th>
<th>more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention to lecture</td>
<td>4%</td>
<td>36%</td>
<td>57%</td>
</tr>
<tr>
<td>Understanding of lecture</td>
<td>2%</td>
<td>52%</td>
<td>46%</td>
</tr>
</tbody>
</table>

Instructor innovations and suggestions

- Taking tablet to the audience
- Elaborate preparation of instructor notes on second deck of slides
- Improved navigation (flyout from thumbnails)
- Collective brainstorming

Inking Study

- In progress
 - Careful study of recorded lectures to look at instructors use of ink
 - Comparison of the class taught with and without ink
- Preliminary results
 - A substantial amount of inking is ephemeral
 - Simplicity of UI is critical
 - Unexpected usage patterns
Instructor Ink Examples

Classroom Feedback System
- Student feedback does not scale
- Encourage participation
- Ease of expression
- If the method does scale, how does the instructor make sense of it

Design choices
- Low attention requirements
- Embed in context of the slide
 - Slides are the mediating artifact
- Fixed feedback
 - Avoid having to compose questions
 - Instructor control of feedback
 - Example, More Information, Got It
 - Slow Down, Question, Explain, Cool Topic

Experiment
- Roughly 12 students given laptops to use in class
- 2 week deployment in CSE 142
 - 4 weeks no intervention
 - 2 weeks Tablet PC
 - 2 weeks Tablet PC + feedback system
- Extensive observations, logging, surveys, interviews

Results
- Mixed results
 - Classroom culture not what we had expected
 - Instructor goals different than expected
- Interactions did increase
 - Pre CFS
 - 2.4 (spoken) episodes per class
 - With CFS
 - 2.6 (spoken) episodes per class
 - 14.8 (feedback) episodes per class
 - 5.0 (feedback – “Got it”) episodes per class

import statement
- A class’ full name includes its package.
 - For example, java.util.ArrayList or java.lang.String
- Often it is more convenient to use the class name without the package, e.g., ArrayList, String
- The import statement tells the compiler where to find class definitions that don't have a complete package name and aren't in the current package
 - Classes can be imported individually, or all classes in a package can be imported
 - java.lang.* is imported automatically by the compiler in Java
 - #include solution not like include in C/C++
import java.util.HashSet

- A class' full name includes its package.
 - for example, java.util.ArrayList or java.lang.String

- Often it is more convenient to use the class name without the package, e.g., ArrayList, String

- The import statement tells the compiler where to find class definitions that don't have a complete package name and aren't in the current package
 - Classes can be imported individually, or all classes in a package can be imported
 - java.lang.* is imported automatically by the compiler
 - is not like #include in C/C++

Student inking support

- Instructor broadcast slide
- Student inks slide and submits to instructor
- Instructor selects slides for public display
- Classroom Exercise Scenario

Trace the path of Hurricane Isabel

Five day forecast (9-15)

Goals of class exercises

- Participation
- Discussion
- Active learning
- Student contribution and involvement
- Interaction
- Spontaneity

Structured Interaction Presentations

- Assume students have wireless devices
- Build interactive activities into lecture
- Computer support to overcome logistical barriers
Structured Interactions for Presentations: the Vision

Enable instructors to design presentations with interactive elements just as they currently design passive presentations:

by laying out simple objects on slides and collecting these into a presentation.

Multiple choice problems

- Students give collection of multiple choice problems
- Result slide shows votes and proposes an ink exercise
- Ink exercises returned to instructor for review
- Instructor has choice of answers to display

Silicon Downs: Pick your winners!

- Race I: \(n^2 + 2n^2 \)
- Race II: \(\log n \)
- Race III: \(2n + 10 \log n \)

- Race IV: \(5n^5 \)
- Race V: \(n^{12n/100} \)
- Race VI: \(3n^2 + 7n \)

Race VII: \(\log n \)

SIP multiple-choice exercise.

Text based exercises

- Students submit textual answers
- Distributed answers to students for analysis
 - Distributed Human Computation
- Aggregate results for shared display
Describe one problem with the “horse race” analogy for comparing asymptotic runtimes.

Horses are physical. Algorithms aren’t.

Note: this is an anonymized, ungraded, untimed collective brainstorm.

Students evaluate each others’ ideas.

<table>
<thead>
<tr>
<th>Left choice</th>
<th>Are these distinct ideas?</th>
<th>Which is more interesting?</th>
<th>Right choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms are faster than horses.</td>
<td>Same</td>
<td>Same</td>
<td>Horses run real distances while algorithms run on computers.</td>
</tr>
<tr>
<td>Horses are cooler.</td>
<td>Distinct</td>
<td>Left</td>
<td>You just can’t compare them.</td>
</tr>
<tr>
<td>The “faster” algorithm doesn’t necessarily win.</td>
<td>Same</td>
<td>Left</td>
<td>You just can’t compare them.</td>
</tr>
<tr>
<td>There’s no fixed target for algorithms like there is for horses.</td>
<td>Distinct</td>
<td>Left</td>
<td>Horses are cooler.</td>
</tr>
</tbody>
</table>

How algorithms and horses differ.

SIP aggregates the results.

SIP Summary

- Support for many types of exercises
- Integration of exercises into presentations
 - unifies design process
 - eases sharing of presentations
 - simplifies in-class execution of exercises
- Scales to large classes

For more information

anderson@cs.washington.edu
wolf@cs.washington.edu
www.cs.washington.edu/education/dl/presenter