Promoting Student Engagement with Classroom Presenter

Richard Anderson
Department of Computer Science and Engineering
University of Washington

Classroom Presenter

- Distributed, Tablet PC Application
- Initial development, 2001-2002 at MSR
- Continuing development at UW
- Collaboration with Microsoft
- CP3 will be released "any day"

- Simple application
- Ink Overlay on images
- Export PPT to image
- Real time ink broadcast
- UI Designed for use during presentation on tablet
- Presentation features
 - Instructor notes on slides
 - Slide minimization

Classroom Presenter as a distributed application

- Designed as distributed application for distance learning
- Enables many scenarios
 - Mobility
 - Walking and taking notes
 - Sharing materials with students
 - Note taking
 - Classroom interaction
 - Student submissions

Ink based presentation

- Tablet PC Inking on images
- Simple pen based controls
- Whiteboard, slide extension
- Multiple views – instructor/display
 - (dual monitor)
- Multiple slides decks with filmstrip navigation

Classroom Presenter

Optimality Condition

- Opt is the maximum weight independent set of intervals \(\{ i_1, \ldots, i_k \} \)
- Let \(\{ i_1, \ldots, i_k \} \) be a set of intervals
- \(\alpha = \max \{ w(i_j) \} \) is the maximum weight
- Opt is a vertex cover of graph \((G,\alpha)\)

“Typical ink usage”
Draw a picture of something from Seattle

Student Attention vs. Time

Classroom Presenter

Deployment Studies
University of Washington
- Computer Science
 - Algorithms, Data Structures, Software Engineering, Digital Design
- College of Forestry
 - Environmental Science and Resource Management
- Classroom set of HP 1100 Tablet PCs
- Average of one activity based lecture per week
- Remaining lectures standard slide based lectures
- One to three students per tablet

Key results
- Successful classroom deployments
- Regular use throughout term
- Generally positive evaluation by all participants
- Effective tool for achieving instructors’ pedagogical goals
- Lecture – Activity model
 - Alternating lecturing with activities
 - Avg. 4 activities per lecture (50 min. classes)
 - 4 min work time, 2 min discussion time per activity
 - 50% of class time associated with activities

Classroom Activities
- Pedagogical Goals
- Classroom Activities
Discussion Artifact
- Use student generated example to explore different aspects of a topic
- Assess overall understanding
- Diagnose misconceptions

Seattle Precipitation and Temperature

Discovery Activity
- Have students derive a concept from an example

Topological Sort
- Given a set of tasks with precedence constraints, find a linear order of the tasks
 - Label vertices with integers 1, 2, ..., n
 - If v precedes w, then l(v) < l(w)

Find a topological order for the following graph

Collective Brainstorm
- Generate student ideas for discussion
- Build a list of ideas
- Analyze and evaluate responses
Special problem: Large Size

List at least three problems trees must face (& solve) because of their large sizes.

1.
2.
3.

Problem Introduction

Have students explore an instance of a problem before topic is introduced.

Determine the LCS of the following strings

BARTHOLEMEOSSIMPSON
KRUSTYTHECLOWN

Submissions

Handwriting Recognition:
Identify the following words
Order the following functions in increasing order by their growth rate:

a) \(n \log_4 n \)
b) \(2n^2 + 10n \)
c) \(2^{n/100} \)
d) \(1000n + \log_8 n \)
e) \(n^{100} \)
f) \(3^n \)
g) \(1000 \log_{10} n \)
h) \(n^{1/2} \)

Who was Dijkstra?

- What were his major contributions?

Compute the bottleneck shortest paths:

Find a maximum flow:

Construct a maximum flow and indicate the flow value.
Determine an optimal mine

Traveling Salesman Problem

Classroom Usage

Collaboration

Anonymity
Results

- Comparison with classroom networks
 - Classroom response systems, "clickers"
 - Single display of rich responses versus aggregated, finite responses
 - Support different classroom goals
- Comparison with paper based activities
 - Most of the activities can be done with paper!
 - Improved logistics with digital system
 - Anonymity
 - Key is ability to incorporate into public display

Comparison with classroom networks

- Single display of rich responses versus aggregated, finite responses
- Support different classroom goals

Comparison with paper based activities

- Most of the activities can be done with paper!
- Improved logistics with digital system
- Anonymity
- Key is ability to incorporate into public display

Classroom Presenter 3

- 3.0 Release – any day now!
- Most significant changes from CP2
 - Support for TCP/IP networking
 - Improved ink support
 - Direct import of PPT (no need for deckbuilder)
- For more information contact
 - Richard Anderson, anderson@cs.washington.edu
 - Natalie Linnell, linnell@cs.washington.edu

Any questions?

For more information, contact Richard Anderson
(anderson@cs.washington.edu)
http://www.cs.washington.edu/education/dl/presenter/

Acknowledgement

- This work has been supported by NSF, HP, and Microsoft Research External Research Programs
- Classroom Presenter users have provided incredibly important feedback to the project
- Many people have contributed to the project including Ruth Anderson, Crystal Hoyer, Jonathan Su, K. M. Davis, Craig Prince, Valentin Razmov, Oliver Chung, Julia Schwarz, Fred Videon, Jay Beavers, Jane Prey, Chris Moffatt, Natalie Linnell, Steve Wolfman, Elian Feinberg, Peter Davis, Beth Simon.