Promoting Student Engagement with Classroom Presenter

Richard Anderson
University of Washington

What will the higher education classroom look like …

- If all students have computational devices
 - Laptops, Tablets, Ultra light tablets, PDAs, Cell Phones, Gameboys . . .
- If the devices are all connected
- If the devices are integrated into classroom instruction

Wide range of potential classroom applications

- Presentation
- Demonstration
- Simulation
- Accessing external resources
- Note taking
- Feedback
- Active learning
- Peer communication

Classroom Technology Vision

Classroom Pedagogy

Student Centric Applications

Sustainable Device Deployment

Study goals

- Are devices effective in achieving instructor specific classroom goals in the traditional lecture model
- What patterns of behavior arise when devices are deployed for classroom interaction
Classroom Presenter

• Distributed, Tablet PC Application
• Initial development, 2001-2002 at MSR
• Continuing development at UW
• Collaboration with Microsoft
• CP3 under development – Release Target, April 1, 2007

• Simple application
 – Ink Overlay on images
 – Export PPT to image
 – Real time ink broadcast
 – UI Designed for use during presentation on tablet
 – Presentation features
 – Instructor notes on slides
 – Slide minimization
 – White board

Deployment Studies
University of Washington

• Computer Science
 – Algorithms, Data Structures, Software Engineering, Digital Design
• College of Forestry
 – Environmental Science and Resource Management
• Classroom set of HP 1100 Tablet PCs
• Average of one activity based lecture per week
 – Remaining lectures standard slide based lectures
• One to three students per tablet

Key results

• Successful classroom deployments
 – Regular use throughout term
 – Generally positive evaluation by all participants
• Effective tool for achieving instructors’ pedagogical goals
• Lecture – Activity model
 – Alternating lecturing with activities
 – Avg. 4 activities per lecture (50 min. classes)
 – 4 min work time, 2 min discussion time per activity
 – 50% of class time associated with activities

Find a topological order for the following graph

Who was Dijkstra?

• List at least two of his contributions
Determine the LCS of the following strings

BARTHOLEMESIMPSION
KRUSTYTHECLOWN

Find a minimum value cut

Traveling Salesman Problem
• Given a complete graph with edge weights, determine the shortest tour that includes all of the vertices (visit each vertex exactly once, and get back to the starting point)

Special problem: Large Size
• List at least three problems trees must face (& solve) because of their large sizes.
1.
2.
3.
• Additional:

Computing Intersections
• What is the maximum number of self intersections of a stroke consisting of n points

Submission Examples
Classroom Usage

- Data from Undergraduate Algorithms course (Fall 2005)
- 7 lectures, 26 activities
- Logged data – timings of submissions

Time per activity

- Work time – students working independently on activities
- Discussion time – student work shown on public display
- Average work time: 4:29
- Average display time: 2:41
Time per activity

Participation rates
- Percentage of students present submitting work
 - Min 11%, Max 100%, Average 69%
- Some students would answer without submitting
- Resubmission common

Submission Rates

Display Behavior
- Average of 6.15 slides per activity displayed (minimum of 1, maximum of 18)
- Common pattern – show one or two for most of the time, and quickly show the others

Submitted and Displayed

Collaboration
- One to three students per tablet
- Interaction between students often encouraged
- Instructors would survey and occasionally comment on student work during activity phase
- Student work a key part of classroom discussion
Anonymity

• Work displayed on public display without any identification
• Limited information about submission displayed on the instructor machine
• Anonymous display valued by the students
• Students often believe the instructor can identify their work
• Tagging behavior observed

Results

• Comparison with classroom networks
 – Classroom response systems, “clickers”
 – Single display of rich responses versus aggregated, finite responses
 – Support different classroom goals
• Comparison with paper based activities
 – Most of the activities can be done with paper!
 – Improved logistics with digital system
 – Anonymity
 – Key is ability to incorporate into public display

Engagement and Participation

• Student participation rates very high
• Student submissions were optional
• No observed trends in submission rates

Positive survey results [1-5 scale]

• Digital Design Survey
 – Impact on learning 4.4
 – Value of seeing solutions displayed 4.3
 – Recommend to other instructors 4.1
• Algorithms Survey
 – Overall evaluation 4.6
 – Increased Engagement 3.5

Classroom Presenter 3

• Beta Release – April 1
• Current builds available from
• Most significant changes from CP2
 – Support for TCP/IP networking
 – Improved ink support
 – Direct import of PPT (no need for deckbuilder)
• For more information contact
 – Richard Anderson, anderson@cs.washington.edu

Any questions?

For more information, contact Richard Anderson
(anderson@cs.washington.edu)
http://www.cs.washington.edu/education/dl/presenter/
Acknowledgement

- This work has been supported by NSF, HP, and Microsoft Research External Research and Programs.
- Classroom Presenter users have provided incredibly important feedback to the project.
- Many people have contributed to the project including Ruth Anderson, Crystal Hoyer, Jonathan Su, K. M. Davis, Craig Prince, Valentin Razmov, Oliver Chung, Julia Schwarz, Fred Videon, Jay Beavers, Jane Prey, Chris Moffatt, Natalie Linnell, Steve Wolfman, Eitan Feinberg, Peter Davis, Beth Simon.