Promoting Student Engagement with Classroom Presenter

Richard Anderson
University of Washington

Draw a picture of something from Corvallis

Student Attention vs. Time

What will the higher education classroom look like ...

- If all students have computational devices
 - Laptops, Tablets, Ultra light tablets, PDAs, Cell Phones, Gameboys . . .
- If the devices are all connected
- If the devices are integrated into classroom instruction

Wide range of potential classroom applications

- Presentation
- Demonstration
- Simulation
- Accessing external resources
- Note taking
- Feedback
- Active learning
- Peer communication

Classroom Technology Vision

Classroom Pedagogy
Student Centric Applications
Sustainable Device Deployment
Study goals
- Are devices effective in achieving instructor specific classroom goals in the traditional lecture model
- What patterns of behavior arise when devices are deployed for classroom interaction

Classroom Presenter
- Distributed, Tablet PC Application
 - Initial development, 2001-2002 at MSR
 - Continuing development at UW
 - Collaboration with Microsoft
 - CP3 under development
 - CP3 Beta released, May 30, 2007
- Simple application
 - Ink Overlay on images
 - Export PPT to image
 - Real time ink broadcast
 - UI Designed for use during presentation on tablet
- Presentation features
 - Instructor notes on slides
 - Slide minimization
 - White board

Deployment Studies
University of Washington
- Computer Science
 - Algorithms, Data Structures, Software Engineering, Digital Design
- College of Forestry
 - Environmental Science and Resource Management
- Classroom set of HP 1100 Tablet PCs
- Average of one activity based lecture per week
 - Remaining lectures standard slide based lectures
 - One to three students per tablet

Key results
- Successful classroom deployments
 - Regular use throughout term
 - Generally positive evaluation by all participants
- Effective tool for achieving instructors’ pedagogical goals
- Lecture – Activity model
 - Alternating lecturing with activities
 - Avg. 4 activities per lecture (50 min. classes)
 - 4 min work time, 2 min discussion time per activity
 - 50% of class time associated with activities

Classroom Activities
- Pedagogical Goals
- Classroom Activities
Discussion Artifact
- Use student generated example to explore different aspects of a topic
- Assess overall understanding
- Diagnose misconceptions

Western Washington Precipitation and Temperature

Discovery Activity
- Have students derive a concept from an example

Topological Sort
- Given a set of tasks with precedence constraints, find a linear order of the tasks
- Label vertices with integers 1, 2, \ldots, n
- If v precedes w, then l(v) < l(w)

Find a topological order for the following graph

Collective Brainstorm
- Generate student ideas for discussion
- Build a list of ideas
- Analyze and evaluate responses
Special problem: Large Size

- List at least three problems trees must face (& solve) because of their large sizes.
 1.
 2.
 3.

Problem Introduction

- Have students explore an instance of a problem before topic is introduced.

Determine the LCS of the following strings

BARTHOLEMEWSIMPSON
KRUSTYTHECLOWN

Submissions

Challenge problems

- Competition in getting solutions
- Simultaneous work
- Submission and discussion

Handwriting Recognition: Identify the following words
Recognition results

All programmers are optimistic. Perhaps this is because they believe in happy endings and fun synergies.

Find a topological order for the following graph

Find a minimum value cut

Determine the LCS of the following strings

How good is this algorithm?
- Is it feasible to compute LCS of two strings of length 100,000 on a standard desktop PC? Why or why not?
- What is achieved on a microcomputer?

What type of tasks might have the following DFN?

What concerns would you have about using Tablet PCs in the classroom?
- Price?
- Battery life?
- Lack of familiarity?

Problems Reduction Examples
- Reduce the problem of finding the maximum of a set of integers to finding the minimum of a set of integers.
- Find the maximum of: 3, 7, 9, 2, 5

Submission examples

Testing
- Testing helps to establish if the algorithm works.
- Testing helps to identify bugs.
- Testing helps to improve performance.

Classroom Usage

- Data from Undergraduate Algorithms course
- Logged data – timings of submissions
- Work time – students working independently on activities
- Discussion time – student work shown on public display
- Average work time: 4:29
- Average display time: 2:41

Participation Rates
- Percentage of students present submitting work
 - Min 11%, Max 100%, Average 69%
- Some students would answer without submitting
- Resubmission common
Collaboration

- One to three students per tablet
- Interaction between students often encouraged
- Instructors would survey and occasionally comment on student work during activity phase
- Student work a key part of classroom discussion

Anonymity

- Work displayed on public display without any identification
- Limited information about submission displayed on the instructor machine
- Anonymous display valued by the students
- Students often believe the instructor can identify their work
- Tagging behavior observed

Results

- Comparison with classroom networks
 - Classroom response systems, "clickers"
 - Single display of rich responses versus aggregated, finite responses
 - Support different classroom goals
- Comparison with paper based activities
 - Most of the activities can be done with paper!
 - Improved logistics with digital system
 - Anonymity
 - Key is ability to incorporate into public display

Classroom Presenter 3

- Beta Release – May 30
- Current builds available from
- Most significant changes from CP2
 - Support for TCP/IP networking
 - Improved ink support
 - Direct import of PPT (no need for deckbuilder)
- For more information contact
 - Richard Anderson, anderson@cs.washington.edu

Any questions?

For more information, contact Richard Anderson
anderson@cs.washington.edu
http://www.cs.washington.edu/education/dl/presenter/

Acknowledgement

- This work has been supported by NSF, HP, and Microsoft Research External Research and Programs
- Classroom Presenter users have provided incredibly important feedback to the project
- Many people have contributed to the project including Ruth Anderson, Crystal Hoyer, Jonathan Su, K. M. Davis, Craig Prince, Valentin Razmov, Oliver Chung, Julia Schwarz, Fred Veeon, Jay Beavers, Jane Prey, Chris Moffatt, Natalie Linnell, Steve Wolfman, Eitan Feinberg, Peter Davis, Beth Simon