The Center for Collaborative Technologies

Richard Anderson
Department of Computer Science and Engineering
University of Washington

10/4/2007 1EE Colloquium

Center for Collaborative Technologies at University of Washington

- UW center funded to develop technologies to support education and other collaborative scenarios
- http://cct.cs.washington.edu
- Extend functionality of ConferenceXP
 - Diagnostics, Security, Remote management, HDTV integration, . . .
- Build community of users and developers
- Deploy ConferenceXP in new scenarios
 - International education
 - Developing world

Research in Educational Technology

- How can computing technology enhance education?
 - Focus on classroom instruction
- Challenges:
 - Extending reach of education
 - Increasing interaction
 - Addressing problems of scale
 - Facilitating expression of ideas

Past and Current Research Projects

- Video conferencing distance education
- UW PMP
- DISC
- ConferenceXP
- Center for Collaborative Technologies
- Presentation systems
- Classroom interaction systems
- Tutored Video Instruction
- UW CC TVI Project
- Beihang TVI project
- Digital StudyHall

Research Approach

- Deployment driven
 - Classroom use
 - Technology development and promotion
- Goals and success criteria
 - Adoption of technology and methodology
 - Influence educational practice
- This is a model that has been working for us
 - Target specific deployments that are innovative in some dimensions

Today’s Talk

- Distance Learning and Video Confereenced Classes
- Tutored Video Instruction
- Lessons learned and remaining challenges
- Future projects
Video Conferenced Teaching

- Multi-site internet based audio-video conferencing
- UW PMP Program
 - Site-to-site courses between UW and Microsoft since Winter 1997
 - www.cs.washington.edu/education/dl/course_index.html
 - Master’s level courses
 - Goal: interaction across sites
 - Various technologies have been used since the program was introduced

Video conferencing in the PMP

 - Polycom + Netmeeting for PPT and SmartBoard
- MSR DISC Project
 - Target: UW, CMU, UCB, Brown graduate class
 - Spring 2002
- MSR ConferenceXP
 - Since Spring 2003
 - UW, MSR, UCB, UCSD
 - Ed Lazowska, Steve Mauer

Distributed Classroom (DISC)

- High quality, low latency video to support interactive classes
- High bandwidth internet video conferencing
 - Internet2
 - Multicast
- Single machine deployment
 - High end PC
 - Performance limit: handling multiple high resolutions video streams
- Innovative presentation tools

Initial Deployment (PMP spring 2002)

- What went wrong
 - Technology and systems failures
 - Multicast networking
 - High cost of interruptions
 - Loss of trust
 - Room configuration issues
 - Lack of control of lecture room
 - Production quality
- Meta lesson
 - Learn more from failures than from successes

ConferenceXP

- Redevelopment of DISC
- Deployment in UW PMP since Spring 2003
 - High reliability (with unicast backup)
 - Supporting tools for archiving and replay
- Scalability to four site courses
 - UW, UCB, Microsoft, UCSD
Classroom Presenter
• Support electronic slides and digital ink
• Initially developed for whiteboard integration of DISC
 – “PowerPoint sucks the life out of a lecture”, EDL
• Tablet PC application
 – Digital ink overlay on slide images
 – Feature set aimed at lecture presentation
• Component of ConferenceXP or stand alone application

Ink based presentation
• Tablet PC Inking on images
• Simple pen based controls
• Whiteboard, slide extension
• Multiple views — instructor/display
 — (dual monitor)
• Multiple slides decks with filmstrip navigation
• Instructor notes

Development of ConferenceXP
• Microsoft Research Project
• Goal: support universities work in distance education and collaboration (on Windows)
• ConferenceXP
 – Internet based video conferencing
 – Extensible platform allowing integration of other data streams
 – Shared source
• Microsoft ended work on project in 2007
 – Established Center for Collaborative Technologies through competitive process to continue stewardship of ConferenceXP

Center for Collaborative Technologies at University of Washington
• UW center funded for continued work on ConferenceXP Platform
 – http://cct.cs.washington.edu
• Extend functionality of ConferenceXP
 – Diagnostics, Security, Remote management, HDTV integration, . . .
• Build community of users and developers
• Deploy ConferenceXP in new scenarios
 – International education
 – Developing world

Projects related to distance learning
• Working with archived lectures
• Large library of recorded lectures available
 – Autumn 2006 Algorithms class recorded with close talking microphones
• Lecture indexing — support text search of speech (and slides and ink)
 – Language modeling necessary (train on algorithms or CS content)
• Lecture summarization
 – Classify lecture episodes
 • Support for lecture browsing
 • Feedback to the instructor
• Lightweight lecture capture

Tutored Video Instruction
• Video recorded lectures shown with facilitator
 – Original model: lectures stopped by students for discussion
 – Peer tutors
• Developed by Jim Gibbons at Stanford University
• Positive results reported in Science [1977]
UW TVI Projects

• Introductory programming
 – Address community college articulation
 – Experiment with alternate approaches to introductory computing instruction
• UW – Beihang Algorithms course
 – Offering of CSE 421 in China
• Digital StudyHall
 – Primary education in rural India

Tutored Video Instruction

• Recorded lecture materials
 – Generally based on live classes
• Class model
 – Lecture playback alternating with facilitator led discussion
 – Facilitation models
 • Gibbons: Peer instruction
 • Active facilitation

UW – Community College

• Lectures recorded from UW Intro Class
• Shown at CCs with local instructors as facilitators
• Project lasted 3 years, involving 9 CCs
 • Phase I
 – Materials from live lecture, centralized grading, management from UW
 • Phase II
 – Studio created materials, CC grading

Lessons Learned

• Results were mixed
• Complicated institutional relationships
 – CC students concerned about competition with UW students
• Facilitation model
 – Did not achieve peer facilitation
 – Co-teaching a more accurate description
 – Facilitators wanted external support (e.g., classroom activities)
• Program helped with instructor development

UW-Beihang CSE 421

• Offer course based on UW course in Beijing
• UW Instructor could not give the course in Beijing
• Scheduling prevented live course offering
 – 1:30 pm Seattle, 4:30 am Beijing
 – Materials captured from live classes
• Tutored Video Instruction
 – Slides, talking head, digital ink

Building on UW – CC experience

• Instructor visits to Beijing to set up project
• Balanced role of institutions
 – Materials from UW
 – Grading, administration at Beihang
 – Have students view the course as a Beihang course
• Training of facilitators
• Support materials
Use of course technology

• UW Course
 – Classroom Presenter for digital ink on slides
 – Students used Tablet PCs once a week for active learning
 • Students write answers on slides, send them to the instructor
 • Instructor previews results and selects slides to display to the class

Activity Examples

Find a topological order for the following graph

Find a minimum value cut

Determine the LCS of the following strings

Results

• Offering successful
 – Technology, institutional relationship
• Cross-cultural issues
 – English language materials were comprehensible
 – Classroom discussion primarily in Chinese
• Facilitation model
 – Significant support for facilitators
 – Classroom activities successful (and popular)
 – Facilitators innovative and reproduced some of the instruction
 – Interactive and informal classroom atmosphere

Digital StudyHall

• Affiliated Project
• Randy Wang, Paul Javid (MSRI, Bangalore)
• Richard Anderson, Tom Anderson (UW)
• Tutored Video Instruction for primary education in rural India
• YouTube + Netflix

Key components

• A people’s database
• Mediation based pedagogy
• Hub and spoke model
• Content distribution by DVD
Status: network of hubs and spokes
- Operational hubs in Lucknow, Bangalore, Pune
- Hub starting in Calcutta, Bangladesh starting in December
- Each hub works with a number of poor village or slum schools

What we’ve learned from all of this
- Value of electronic materials in the process of classroom instruction
- Tools for teaching
 - Teacher and students drive the process
 - Flexible and unpredictable use
- Importance of high reliability
 - And attention to address issues
- Broader context – interplay of technology and other issues

Deployment Driven Research
- Development and deployment of educational technology
- Internal
 - Working with our own classes
 - Opportunity to innovate
 - Pressure to make things work
- External
 - Broad range of ideas
 - User suggestions
 - Feedback on ideas

Directions for future work
- Enhanced lecture capture and analysis
- Speech to text with domain specific training for lecture indexing
- Lecture summarization
- Lightweight capture

Richer content support for slide based lectures
- Slide model: static content or build slide animations
- Challenge: provide a richer model of content for dynamic presentations
 - Particular domain of interest: mathematical content
- Starting points
 - Instructor notes
 - Structured Interaction Presentations (SIP) [Wolfman]
 - Geometrical structure for slides

Facilitation for Tutored Video Instruction
- Teaching with recorded materials
 - Peer discussion vs. co-teaching
- Regular interruptions for active learning
- Beihang class
 - Facilitators made substantial use of Classroom Presenter
 - Activity structure was successful
- Projects
 - Develop integrated TVI replay, presentation and classroom interaction tools
 - Refine methodology for combining active learning with TVI
 - Replay tools for DSH scenarios
Classroom Accessibility

- Opportunities in electronic classroom for greater accessibility
- Classroom capture and archiving
- Real time interpretation
 - Captioning/Screen reading
- Input
 - Instant messaging, shared whiteboard, custom input facilities
- Collaborative work with Richard Ladner

Enabling Access to STEM Education

- Development of ConferenceXP Platform
- Establish as a shared source project
- System enhancements
 - Multicast diagnostics
 - Security
- Deployments
 - Collaboration with Microsoft sponsored Latin America Virtual Institute
 - UW Professional Master’s Program

Center for Collaborative Technologies

- Multi-site classes with ConferenceXP
- Challenges
 - Networking issues (firewall, multicast)
 - Identifying cases where interactivity is needed
 - Time zones
 - West Coast US (6:00 pm) & China (9:00 am)
- Short term
 - Pilot tests with Chinese Universities
 - Latin America Virtual Institute
 - International guest lectures for UW CSE PMP Class (spring)

Domains of Special Interest

- Higher Education
- International Courses
- Developing World
- Global Health

International Education

- Tremendous challenges faced in education in the developing world
- Technology supported instruction that is cost-realistic and sustainable
- Digital StudyHall
 - India, Bangladesh, Eritrea, . . .
- Interactive, Facilitated Video Instruction
- Low cost multi-person interaction
 - E.g., Multimouse
- Deployment issues
 - Lack of power, network connectivity
Global Health

• Strong regional opportunity
• Distance education to support medical education
• Alternate models of video based instruction

For more information

• Richard Anderson
 – anderson@cs.washington.edu
• Classroom Presenter
 – http://education.cs.washington.edu/dl/presenter/
• Center for Collaborative Technologies at UW
 – http://cct.cs.washington.edu/
• Digital StudyHall
 – http://dsh.cs.washington.edu/

• Other contacts
 – CCT: Fred Videon (fred@cs.washington.edu)
 – Digital StudyHall: Paul Javid (pjavid@cs.washington.edu), Tom Anderson (tom@cs.washington.edu)
 – Classroom Accessibility: Richard Ladner (ladner@cs.washington.edu)

Acknowledgements

• Support from Microsoft Research, National Science Foundation, HP, Ford, UW CSE
• Jay Beavers, Jane Prey, Randy Hinrichs, Chris Moffatt, Jason Van Eaton, Paul Oka, Steve Wolfman, Ken Yasuhara, Kate Deibel, Ruth Anderson, Craig Prince, Valentin Razmov, Natalie Linneil, Krista Davis, Jonathon Su, Saree Su, Peter Davis, Tammy VanDeGrift, Joe Tront, Alon Halevy, Gaetano Borriello, Ed Lazowska, Hal Perkins, Susan Eggers, Fred Videon, Rod Prieto, Oliver Chung, Crystal Hoyer, Beth Simon, Eitan Feinberg, Julia Schwarz, Jim Fridley, Tom Hinkley, Ning Li, Jing Li, Luo Jie, Jiangfeng Chen, Melody Kadenko, Julie Svendsen, Shannon Gilmore