Collaborative Technologies for International Education

- Richard Anderson
- Professor of Computer Science and Engineering
- University of Washington

Center for Collaborative Technologies

- Microsoft funded center
- Investigate education and other collaborative scenarios
- Extend and maintain the ConferenceXP platform
- Build the community of users and developers

Research in Educational Technology

- How can computing technology enhance international education?
 - Focus on tools/techniques/technologies to allow faculty to take advantage of opportunities for collaboration and address specific needs
- Challenges:
 - Extending reach of education
 - Increasing interaction
 - Addressing problems of scale
 - Facilitating expression of ideas

Past and Current Research Projects

- Video conferencing for distance education
- UW PMP
- DISC
- ConferenceXP
- Center for Collaborative Technologies
- Classroom Presenter 2.0
- Classroom Presenter 3.0
- Classroom Feedback (CFS)
- CARTS for CS
- Structured Interactions (SIP)
- Student submissions with CP
- Current Video Instruction
- UW CC TVI Project
- Beijing TVI project
- Digital StudyHall

Research Approach

- Deployment driven
 - Classroom use
 - Technology development and promotion
- Goals and success criteria
 - Adoption of technology and methodology
 - Influence educational practice
- This is a model that has been working for us
 - Target specific deployments that are innovative
 - Work with partners
Today’s Talk

- Technology to support international education
- Video conferenced teaching
 - ConferenceXP
- Tutored Video Instruction
- Lessons learned and challenges
- Future projects

International Educational Experiences

- United States Perspective
 - For students
 - Critically important that some US students understand how to work in a global environment
 - Gain particular skills (language/culture)
 - Knowledge available in international classes
 - For faculty
 - Disseminate education on a global scale
 - Working with international groups
 - Strengthen and maintain ties
 - Gain international perspective on research and education
 - Understand emerging trends

Challenges in International Collaboration

- Distance
- Language and culture
- Time zones
- Schedules
- Institutional alignment

Where collaboration technologies can help

- Reduce costs
- Support innovations in communication

What is the role of a project such as ConferenceXP?

- Why not just use Skype?
 - Answer 1: Broader scenarios
 - Answer 2: Platform to support innovation
 - Low cost to enable entry
 - Extendable platform
 - Shared source

Video conferenced teaching

- ConferenceXP Project
 - Started at Microsoft Research in 2001
 - Transferred to University of Washington in 2007 with Center for Collaborative Technologies
- Initial project goal
 - Support multisite courses with high bandwidth, multicast, internet based audio-video conferencing
Video Conferenced Teaching

• Multi-site internet based audio-video conferencing
• UW PMP Program
 – Site-to-site courses between UW and Microsoft since Winter 1997
 – cs.washington.edu/education/dl/course_index.html
 – Master’s level courses
 – Goal: interaction across sites
 – Various technologies have been used since the program was introduced

Distance Classes in UW CSE Master’s Program

• Initial phase
 – Polycom + Netmeeting for PPT and SmartBoard
• MSR DISC Project
 – Target: UW, CMU, UCB, Brown graduate class
 – Spring 2002
• ConferenceXP
 – Since Spring 2003
 – UW, MSR, UCB, UCSD

ConferenceXP

• High quality, low latency video to support interactive classes
• High bandwidth internet video conferencing
 – Internet2
 – Multicast
• Single machine deployment
 – High end PC
 – Performance limit: handling multiple high resolutions video streams
• Innovative presentation tools

Initial Challenges (Spring 2002)

• What went wrong
 – Technology and systems failures
 – Multicast networking
 – High cost of interruptions
 – Audio
 – Loss of trust
 – Room configuration issues
 – Lack of control of lecture room
 – Production quality
• Meta lesson
 – Learn more from failures than from successes

• How to Fail at Video Conferenced Teaching
 – Microsoft Faculty Summit 2002
 – Anderson & Beavers
Success in distance classes

• Goals
 – Real time interaction between sites
 – High quality video

• Challenges
 – High bandwidth connections
 – Classroom Audio
 – Establishing a pattern of interaction

Dealing with multicast problems

• Reflector service
 – Plug in unicast to replace multicast
• Used as backup in our courses
• Solution when connecting to networks without multicast

Hardware Multicast

• Technology bet (2001)
 – Multicast networking to support multisite courses
 – Substantial bandwidth savings
 – Multicast not uniformly supported

Masters class, UW - Pakistan

• Masters class
 – University of Washington
 – Lahore University of Management Science
 – Microsoft

• Computing for the Developing world

Going International

• March 29, 2008, LACCIR Meeting
 – Latin American and Caribbean Collaboration for ICT Research
• Seattle and University of Chile, Santiago, Chile
• Seminar presentation
• CXP Unicast reflector

Technical Challenges

• Ensuring adequate bandwidth
 – Limited bandwidth to Pakistan
 – Reliability
 – Multicast

• Ensuring this did not compromise UW-MS class
 – Limited time to prepare
Fred's whiteboard

Basic PMP setup (2 sites)

3-way setup for UW, MS, LUMS

Use of Classroom Presenter
- Tablet PC based presentation and classroom interaction system
- Ink based presentation
- Classroom Activities

Classroom Presenter

Classroom Activities

What could go wrong?

- What are the potential difficulties with a large scale PMP-based course?
- How many students need to be in the same location?
- How will central information be shared amongst students?
Status as of six weeks

- Full connectivity
 - One lecture originated from Pakistan
- Improving audio (microphone issues)
- Participation of students from Pakistan
 - Student submissions
 - Questions and discussions
- Multiple rounds of audio communication

Key lessons

- Participants must have incentive for a distance course
- Instructor must make an effort to create multisite interaction
- Active participants at remote site help

Other opportunities

- Language instruction
- Music
- PhD Exams

Tutored Video Instruction

- Video recorded lectures shown with facilitator
 - Original model: lectures stopped by students for discussion
 - Peer tutors
- Developed by Jim Gibbons at Stanford University
- Positive results reported in Science [1977]

UW TVI Projects

- Introductory programming
 - Address community college articulation
 - Experiment with alternate approaches to introductory computing instruction
- UW – Beihang Algorithms course
 - Offering of CSE 421 in China
- Digital StudyHall
 - Primary education in rural India
UW-Beihang Algorithms class

- Offer course based on UW course in Beijing
- UW Instructor could not give the course in Beijing
- Scheduling prevented live course offering
 - 1:30 pm Seattle, 4:30 am Beijing
- Materials captured from live classes
- Tutored Video Instruction
 - Slides, talking head, digital ink
- Set up visit
 - Met with Teaching Assistants
 - Tested all technology
 - Trained Teaching Assistants in facilitation
 - Gave classes to students to demonstrate technology and TVI
- Midterm visit
 - Observed classes
 - Gave lecture without recorded video
- Regular communication with Teaching Assistants
- Data collection
- Applications displayed
 - Webviewer for video replay
 - Classroom Presenter
- Teaching Assistants would show video or show CP for inking on slides or classroom interaction

Involvement with Remote Site

- Set up visit
 - Met with Teaching Assistants
 - Tested all technology
 - Trained Teaching Assistants in facilitation
 - Gave classes to students to demonstrate technology and TVI
- Midterm visit
 - Observed classes
 - Gave lecture without recorded video
- Regular communication with Teaching Assistants
- Data collection

Course Delivery

- Applications displayed
 - Webviewer for video replay
 - Classroom Presenter
- Teaching Assistants would show video or show CP for inking on slides or classroom interaction

Summary of Project Results

- Offering successful
 - Technology, institutional relationship
 - Cross-cultural issues
 - English language materials were comprehensible
 - Classroom discussion primarily in Chinese
- Facilitation model
 - Significant support for facilitators
 - Classroom activities successful (and popular)
 - Facilities innovative and reproduced some of the instruction
 - Interactive and informal classroom atmosphere

Language Issues

- Lectures delivered in English
 - Language exposure consider to be a positive side effect of the course
- Teaching assistants facilitated in English
 - But discussions were generally in Chinese
- Students reported using lectures outside of class
- Instructor observations from site visit
 - Chinese students had substantially more English listening than speaking experience
 - Recorded lectures did contain some colloquial usage and cultural specific references which were lost

Facilitation

- Support provided for facilitators
 - Lecture notes
 - Activities
- Facilitators invested a larger effort in preparation
 - Studying videos
 - Planning how to cover content
- Active facilitation
 - Worked through lecture examples
 - Led activities
 - Asked questions to students

Example: facilitators working through example from lecture slides
Classroom Activities
- Tablet PC supported activities
 - Student submission model
 - Used for every lecture
- Technology generally successful
- Considered very positive by students
- Provided a structure for active learning

Classroom Environment
- Contrast to traditional large lecture class
- Highly interactive class
 - Interaction episodes measured by observation logs and videos of Beihang classes
 - Average of 13 interaction episodes per class, 10 with students speaking
 - UW class averaged about 20 interaction episodes per equivalent length of time
 - Beihang episodes averaged a greater number of rounds of communication
- Class atmosphere was informal

Results
- Offering successful
 - Technology, institutional relationship
- Cross-cultural issues
 - English language materials were comprehensible
 - Classroom discussion primarily in Chinese
- Facilitation model
 - Significant support for facilitators
 - Classroom activities successful (and popular)
 - Facilitators innovative and reproduced some of the instruction
 - Interactive and informal classroom atmosphere

What we’ve learned from all of this
- Value of electronic materials in the process of classroom instruction
- Tools for teaching
 - Teacher and students drive the process
 - Flexible and unpredictable use
- Importance of high reliability
 - And attention to address issues
- Broader context – interplay of technology and other issues

For more information
- Richard Anderson
 - anderson@cs.washington.edu
- Classroom Presenter
- Center for Collaborative Technologies at UW
 - http://cct.cs.washington.edu/
- Digital Study Hall
 - http://dsh.cs.washington.edu/
- Other contacts
 - CCT: Fred Videon (fred@cs.washington.edu)
 - Andrew Whitaker (andrew@cs.washington.edu)

Acknowledgements
- Support from Microsoft Research, National Science Foundation, HP, Ford, UW CSE