The Center for Collaborative Technologies
Richard Anderson
Department of Computer Science and Engineering
University of Washington

March 28, 2008

Center for Collaborative Technologies at University of Washington
- UW center funded to develop technologies to support education and other collaborative scenarios
 - http://cct.cs.washington.edu
- Extend functionality of ConferenceXP
 - Diagnostics, Security, Remote management, HDTV integration, ...
- Build community of users and developers
- Deploy ConferenceXP in new scenarios
 - International education
 - Developing world

Research in Educational Technology
- How can computing technology enhance education?
 - Focus on classroom instruction
- Challenges:
 - Extending reach of education
 - Increasing interaction
 - Addressing problems of scale
 - Facilitating expression of ideas

Past and Current Research Projects
- Video conferenced distance education
 - UW PMP
 - DISC
 - ConferenceXP
- Classroom interaction systems
 - Classroom Presenter 2.0
 - Classroom Presenter 3
- Tutored Video Instruction
 - UW CC TVI Project
 - Beihang TVI Project
- Structured Interaction Presentations (SIP)
- Student submissions with CP
- Digital Study Hall

Research Approach
- Deployment driven
 - Classroom use
 - Technology development and promotion
- Goals and success criteria
 - Adoption of technology and methodology
 - Influence educational practice
- This is a model that has been working for us
 - Target specific deployments that are innovative in some dimensions

Today’s Talk
- Distance Learning and Video Conferenced Classes
- Tutored Video Instruction
- Lessons learned and remaining challenges
- Future projects
Video Conferenced Teaching

- Multi-site internet based audio-video conferencing
- UW PMP Program
 - Site-to-site courses between UW and Microsoft since Winter 1997
 - www.cs.washington.edu/education/dl/course_index.html
 - Master’s level courses
 - Goal: interaction across sites
 - Approximate single classroom
 - Various technologies have been used since the program was introduced

March 26, 2008 LACCIR 7

Video conferencing in the PMP

 - Polycom + Netmeeting for PPT and SmartBoard
- MSR DISC Project
 - Target: UW, CMU, UCB, Brown graduate class
 - Spring 2002
- MSR ConferenceXP
 - Since Spring 2003
 - UW, MSR, UCB, UCSD
 - Ed Lazowska, Steve Mauer

March 26, 2008 LACCIR 8

Distributed Classroom (DISC)

- High quality, low latency video to support interactive classes
- High bandwidth internet video conferencing
 - Internet2
 - Multicast
- Single machine deployment
 - High end PC
 - Performance limit: handling multiple high resolutions video streams
- Innovative presentation tools

March 26, 2008 LACCIR 9

ConferenceXP

- Redevelopment of DISC
 - Initial deployment in 2002 unsuccessful
 - “How to fail at video conferenced teaching”
- Deployment in UW PMP since Spring 2003
 - High reliability (with unicast backup)
 - Supporting tools for archiving and replay
- Scalability to four site courses
 - UW, UCB, Microsoft, UCSD

March 26, 2008 LACCIR 10

Development of ConferenceXP

- Microsoft Research Project
- Goal: support universities work in distance education and collaboration (on Windows)
- ConferenceXP
 - Internet based video conferencing
 - Extensible platform allowing integration of other data streams
 - Shared source
- Microsoft ended work on project in 2007
 - Established Center for Collaborative Technologies through competitive process to continue stewardship of ConferenceXP

March 26, 2008 LACCIR 11

Center for Collaborative Technologies at University of Washington

- UW center funded for continued work on ConferenceXP Platform
 - http://cct.cs.washington.edu
- Extend functionality of ConferenceXP
 - Diagnostics, Security, Remote management, HDTV integration, ...
- Build community of users and developers
- Deploy ConferenceXP in new scenarios
 - International education
 - Developing world
Projects related to distance learning

- Working with archived lectures
- Large library of recorded lectures available
 - Autumn 2006 Algorithms class recorded with close talking microphone
- Lecture indexing – support text search of speech (and slides and ink)
 - Language modeling necessary (train on algorithms or CS content)
- Lecture summarization
 - Classify lecture episodes
 - Support for lecture browsing
 - Feedback to the instructor
- Lightweight lecture capture

Tutored Video Instruction

- Video recorded lectures shown with facilitator
 - Original model: lectures stopped by students for discussion
 - Peer tutors
- Developed by Jim Gibbons at Stanford University
- Positive results reported in Science [1977]

UW TVI Projects

- Introductory programming
 - Address community college articulation
 - Experiment with alternate approaches to introductory computing instruction
- UW – Beihang Algorithms course
 - Offering of UW CSE 421 in China

Tutored Video Instruction

- Recorded lecture materials
 - Generally based on live classes
 - Some design to support TVI
 - Good teacher with an interactive style
- Class model
 - Lecture playback alternating with facilitator led discussion
 - Facilitation models
 - Gibbons: Peer instruction
 - Active facilitation

What we’ve learned from all of this

- Value of electronic materials in the process of classroom instruction
- Tools for teaching
 - Teacher and students drive the process
 - Flexible and unpredictable use
- Importance of high reliability
 - And attention to address issues
- Broader context – interplay of technology and other issues

Deployment Driven Research

- Development and deployment of educational technology
- Internal
 - Working with our own classes
 - Opportunity to innovate
 - Pressure to make things work
- External
 - Broad range of ideas
 - User suggestions
 - Feedback on ideas
Directions for future work

- Enhanced lecture capture and analysis
- Speech to text with domain specific training for lecture indexing
- Lecture summarization
- Lightweight capture

Facilitation for Tutored Video Instruction

- Teaching with recorded materials
 - Peer discussion vs. co-teaching
- Regular interruptions for active learning
- Beihang class
 - Facilitators made substantial use of Classroom Presenter
 - Activity structure was successful
- Projects
 - Develop integrated TVI replay, presentation and classroom interaction tools
 - Refine methodology for combining active learning with TVI
 - Replay tools for DSH scenarios

Classroom Technology

- Classroom Presenter Project
 - Integration with student devices
 - Moving beyond tablets and laptops
- Lowcost PCs for school deployments

Classroom Accessibility

- Opportunities in electronic classroom for greater accessibility
- Classroom capture and archiving
- Real time interpretation
 - Captioning/Screen reading
- Input
 - Instant messaging, shared whiteboard, custom input facilities

Center for Collaborative Technologies

- Development of ConferenceXP Platform
- Establish as a shared source project
- System enhancements
 - Multicast diagnostics
 - Security
- Deployments
 - Collaboration with Microsoft sponsored Latin America Virtual Institute
 - UW Professional Master’s Program
 - UW/Microsoft/Lahore University of Management Sciences
 - Music and language instruction

International Education

- Multi-site classes with ConferenceXP
- Challenges
 - Networking issues (firewall, multicast)
 - Identifying cases where interactivity is needed
 - Time zones
 - West Coast US (6:00 pm) & China (9:00 am)
- Short term
 - Pilot tests with Chinese Universities
 - Latin America Virtual Institute
 - International guest lectures for UW CSE PMP Class (spring)
Questions?

For more information

- Richard Anderson
 anderson@cs.washington.edu
- Paul Oka
 paul.oka@microsoft.com
- Classroom Presenter
 http://www.cs.washington.edu/education/dl/presenter/
- Center for Collaborative Technologies at UW
 http://cct.cs.washington.edu/
- UW Professional Master’s Program course
 http://cs.washington.edu/csep590b

Acknowledgements

- Support from Microsoft Research, National Science Foundation, HP, Ford, UW CSE