Expanding the reach of education through technology

Research in Educational Technology

- How can computing technology enhance education?
 - Focus on classroom instruction

- Challenges:
 - Extending reach of education
 - Increasing interaction
 - Addressing problems of scale
 - Facilitating expression of ideas

Past and Current Research Projects

Research Approach

- Deployment driven
 - Classroom use
 - Technology development and promotion

- Goals and success criteria
 - Adoption of technology and methodology
 - Influence educational practice

- Target specific deployments
 - Innovate in some aspect of deployment

Today’s Talk

- Distance Learning and Video Conferenced Classes
- Tutored Video Instruction
- Digital Study Hall
- Educational Technology for Low Resource Environments

Video Conferenced Teaching

- Multi-site internet based audio-video conferencing
- UW Master’s Program
 - Site-to-site courses between UW and Microsoft since Winter 1997
 - www.cs.washington.edu/education/dl/course_index.html
 - Master’s level courses
 - Goal: interaction across sites
 - Approximate single classroom
 - Various technologies have been used since the program was introduced
Distance Classes in UW CSE Master’s Program

- Initial phase
 - Polycom + Netmeeting for PPT and SmartBoard
 - MSR DISC Project
 - Target: UW, CMU, UCB, Brown graduate class
 - Spring 2002
- ConferenceXP
 - Since Spring 2003
 - UW, MSR, UCB, UCSD

Initial Challenges (Spring 2002)

- What went wrong
 - Technology and systems failures
 - Multicast networking
 - High cost of interruptions
 - Audio
 - Loss of trust
 - Room configuration issues
 - Lack of control of lecture room
 - Production quality
 - Meta lesson
 - Learn more from failures than from successes

- How to Fail at VideoConferenced Teaching
 - Microsoft Faculty Summit 2003
 - Anderson & Beavers

Success in distance classes

- Goals
 - Real time interaction between sites
 - High quality video
- Challenges
 - High bandwidth connections
 - Multicast vs. Unicast
 - Classroom Audio
 - Establishing a pattern of interaction
Going International

- March 29, 2008, LACCIR Meeting
 - Latin American and Caribbean Collaboration for ICT Research
- Seattle and University of Chile, Santiago, Chile
- Seminar presentation
 - October 15, 2008
- CXP Unicast reflector

Masters class, UW - Pakistan

- Masters class
 - University of Washington
 - Lahore University of Management Science
 - Microsoft
 - Computing for the Developing world

Technical Challenges

- Ensuring adequate bandwidth
 - Limited bandwidth to Pakistan
 - Reliability
 - Multicast
 - Ensuring this did not compromise UW-MS class
 - Limited time to prepare

Basic PMP setup (2 sites)

3-way setup for UW, MS, LUMS

Use of Classroom Presenter

- Tablet PC based presentation and classroom interaction system
 - Ink based presentation
 - Classroom Activites
High connectivity for 9 out of 10 classes
- One lecture originated from Pakistan
- Only failure was on the UW-Microsoft Link (which also brought down UW-Pakistan)
- Improved audio (microphone issues)
- Participation of students from Pakistan
- Student submissions
- Questions and discussions
- Multiple rounds of audio communication

Participants must have incentive for a distance course
- Instructor need to make an effort to create multisite interaction
- Active participants at remote sites help
- Time zones and scheduling are major issues

Video recorded lectures shown with facilitator
- Original model: lectures stopped by students for discussion
- Developed by Jim Gibbons at Stanford University
- Positive results reported in Science [1977]
Tutored Video Instruction

- Recorded lecture materials
 - Generally based on live classes
- Class model
 - Lecture playback alternating with facilitator led discussion
 - Facilitation models
 - Gibbons: Peer instruction
 - Active facilitation

UW-Beihang Algorithms Class

- Offer a course in Beijing based on UW course
- UW instructor could not teach the course in China
 - Scheduling prevented a live course offering
 - 1:30 pm in Seattle is 4:30 am in Beijing
 - Materials captured from live class
- Tutored Video Instruction
 - Slides, talking head, digital ink

Involvement with Remote Site

- Set up visit
 - Met with Teaching Assistants
 - Tested all technology
 - Trained Teaching Assistants in facilitation
 - Gave classes to students to demonstrate technology and TVI
- Midterm visit
 - Observed classes
 - Gave lecture without recorded video
 - Regular communication with Teaching Assistants
 - Data collection

Course Delivery

- Applications displayed
 - Webviewer for video replay
 - Classroom Presenter
 - Teaching Assistants would show video or show CP for inking on slides or classroom interaction

Summary of Project Results

- Offering successful
 - Technology, institutional relationship
- Cross-cultural issues
 - English language materials were comprehensible
 - Classroom discussion primarily in Chinese
- Facilitation model
 - Significant support for facilitators
 - Classroom activities successful (and popular)
 - Facilitators innovative and reproduced some of the instruction
 - Interactive and informal classroom atmosphere

Language Issues

- Lectures delivered in English
 - Language exposure consider to be a positive side effect of the course
 - Teaching assistants facilitated in English
 - But discussions were generally in Chinese
 - Students reported using lectures outside of class
 - Instructor observations from site visit
 - Chinese students had substantially more English listening than speaking experience
 - Recorded lectures did contain some colloquial usage and cultural specific references which were lost
Facilitation
- Support provided for facilitators
 - Lecture notes
 - Activities
- Facilitators invested a larger effort in preparation
 - Studying videos
 - Planning how to cover content
- Active facilitation
 - Worked through lecture examples
 - Led activities
 - Asked questions to students
- Example: facilitators working through example from lecture slides

Classroom Activities
- Tablet PC supported activities
 - Student submission model
 - Used for every lecture
- Technology generally successful
 - Considered very positive by students
 - High rate of participation
 - Provided a structure for active learning

Classroom Environment
- Contrast to traditional large lecture class
- Highly interactive class
 - Interaction episodes measured by observation logs and videos of Beihang classes
 - Average of 13 interaction episodes per class, 10 with students speaking
 - UW class averaged about 20 interaction episodes per equivalent length of time
 - Beihang episodes averaged a greater number of rounds of communication
 - Class atmosphere was informal

Results
- Offering successful
 - Technology, institutional relationship
 - Cross-cultural issues
 - English language materials were comprehensible
 - Classroom discussion primarily in Chinese
- Facilitation model
 - Significant support for facilitators
 - Classroom activities successful (and popular)
 - Facilitators innovative and reproduced some of the instruction
 - Interactive and informal classroom atmosphere

Digital StudyHall
- Affiliated Project
- Collaboration with Randy Wang in Lucknow
- Tutored Video Instruction for primary education in rural India
- YouTube + Netflix

Key components
- A people’s database
- Mediation based pedagogy
- Hub and spoke model
- Content distribution by DVD
Status: network of hubs and spokes

- Operational hubs in Lucknow, Calcutta, Pune, and Bangladesh
- Each hub works with a number of poor village or slum schools

Digital StudyHall Evaluation Study

- Classroom study starts July 2009
 - Two year study
- 12 schools in Uttar Pradesh
 - 12 DSH Classrooms
 - 12 Traditional Classrooms
- Evaluate Learning gains through pretest/posttest
- Classroom observations
- Study impact on teachers

What we’ve learned from all of this

- Value of electronic materials in the process of classroom instruction
- Tools for teaching
 - Teacher and students drive the process
 - Flexible and unpredictable use
- Importance of high reliability
 - And attention to address issues
- Broader context – interplay of technology and other issues

Educational Technology for Low Resource Environments

- Facilitated Video Instruction
 - Biggest opportunity to enhance expertise
- Synchronous Distance
 - Limited applications – but some specific cases of interest
 - Classroom capture
- Classroom Computing
 - Computer lab and individual devices
- Computing Education
 - Lack of technical literacy is a limiting factor

Facilitated Video Instruction

- Recorded video with a facilitator
 - Take advantage of expertise
 - Facilitator has very important role
- Applicable to a broad range of educational domains
 - Primary and secondary
 - Health
 - Agriculture
 - Vocational
 - College

Facilitated Video Instruction

- Applicability for low resource environments
 - Low cost
 - Replay (TV + DVD)
 - Digital Video + PC based editing
 - Locally created content
- Key components
 - Facilitation methodology
 - Support for facilitator
 - Program structure
 - Content creation through delivery
- Technology
 - Video production tool chain
 - Content distribution
 - Delivery
 - Feedback and monitoring
Synchronous Distance Education

- Bandwidth is a significant issue
 - Low bandwidth + high cost
- May be relevant for institutional outreach programs
 - Arvind Eye Hospital, Tamil Nadu, India
 - International medical education
- Positive side effect: classroom capture
- Risk: Driven by need to justify infrastructure – not for educational needs

Classroom Computing

- School based computing
 - Risk: deployments leading educational goals
 - Challenge: maximize benefits of “computers for schools initiatives”
- Models
 - Low cost educational devices
 - Classmate, OLPC, Asus eee, ...
 - Shared use
 - Multipoint
 - School server

Computing Education

- Shortage of trained professionals
- Hostile Computing Ecosystem
 - Very high virus infection
 - Poorly administered machines
- Solutions
 - Computing practices and maintenance

For more information

- Richard Anderson
 - anderson@cs.washington.edu
- Classroom Presenter
- Center for Collaborative Technologies at UW
 - http://cct.cs.washington.edu/
- Digital StudyHall
 - http://dsh.cs.washington.edu/

Acknowledgements

- Support from Microsoft Research, National Science Foundation, HP, Ford, UW CSE