Tablet PC’s and the Electronic Classroom
Richard Anderson
University of Washington

Background
- Department of Computer Science and Engineering, University of Washington
 - Since 1986
- Experience
 - PhD., Stanford University, 1985
 - Post doc, Math Sciences Research Institute, Berkeley
 - Visiting Professors, IISc, Bangalore, 1993
 - Visiting Scientist, MSR, 2001
- Research Interests
 - Educational Technology, Pen Based Computing, Computing for the Developing World

What will the classroom look like . . .
- If all students have computational devices
 - Laptops, Tablets, Ultra light tablets, PDAs, Smart Phones, Gameboys . . .
- If the devices are all connected
- If the devices are all integrated into classroom instruction

Integration of Student Devices in the Electronic Classroom

Wide range of potential classroom applications
- Presentation
- Demonstration
- Simulation
- Accessing external resources
- Note taking
- Feedback
- Active learning
- Peer communication

The Slide Based Lecture
- Widely used in higher education
 - But often criticized
- What are the good points?
 - Provides structure for class
 - Sharing materials and persistent across course offerings
 - High quality diagrams and pictures
 - Mediating artifact for discussion
What do good teachers do with PowerPoint?

• Use technology to leverage teaching skills
• Maintain interaction with audience
• Adjust presentation based on audience feedback
• Use other mechanisms for altering displayed material

Ink in the Classroom

• Flexibility to create content
 — Rich expression
 — Symbolic and diagrammatic languages
 — Show process
• Classroom Presenter
 — Integrate digital ink and electronic slides on Tablet PC

Classroom Presenter

“Typical ink usage”

Diagrammatic Ink

Activity Based Lesson

• Active Learning
 — Student based activities integrated into lesson
 — Supported by many different educational theories
 — Group work, feedback, reinforcement, peer learning, constructivism, engagement
Classroom goals (atmosphere)

- Encourage students to contribute in multiple ways
- Promote engagement in the class
 - Interest
 - Alertness
- Demonstrate that all students have important opinions
- Peer interaction

Classroom Goals (specific activities)

- Feedback – classroom assessment
- Collection of ideas
 - Collective brainstorm
- Student generation of examples
- Discovery of a pedagogical point
- Gain understanding of an example
- Show misconceptions

History of Classroom Presenter

- Initially designed as presentation system for distributed classroom
 - ink and slides for flexibility in distance learning presentation
- Stand alone presentations
- Integration with student note taking
- Active learning with annotations from students
- 2001-2002 Project started at MSR
- Code released to UW to allow continuation of project
 - Integration with ConferenceXP
 - MSR license
 - Multicast networking
- 2006, CP3 released
 - Improved network communication
 - BSD Open source license

Classroom Presenter as a distributed application

- Designed as distributed application for distance learning
- Enables many scenarios
 - Mobility
 - Walking and talking
 - Sharing materials with students
 - Note taking
 - Classroom interaction
 - Student submissions
Basic Usage, Higher Education

• Initially targeting Computer Science Classes
• Picked up by a wide faculty in a wide range of disciplines

Discussion Artifact

• Use student generated example to explore different aspects of a topic
• Assess overall understanding
• Diagnose misconceptions

Taipei Precipitation and Temperature

Aside: Instructor Notes

Text that only appear on the instructor’s screen

Discovery Activity

• Have students derive a concept from an example

Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks
 - If v precedes w, then l(v) < l(w)
• Label vertices with integers 1, 2, . . . , n
Find a topological order for the following graph

Collective Brainstorm
- Generate student ideas for discussion
- Build a list of ideas
- Analyze and evaluate responses

Special problem: Large Size
- List at least three problems trees must face (& solve) because of their large sizes.
 1.
 2.
 3.

Problem Introduction
- Have students explore an instance of a problem before topic is introduced

Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

Submissions
Challenge problems

- Competition in getting solutions
- Simultaneous work
- Submission and discussion

Handwriting Recognition: Identify the following words

Recognition results

Example Submissions

Interesting Case Studies

- Synchronous Distance Education
- Tutored Video Instruction
- Elementary School
ConferenceXP Project

- High quality, low latency video to support interactive classes
- High bandwidth internet video conferencing
 - Internet2
 - Multicast
- Collaboration between UW and MSR
- Distance learning support for UW Professional Master’s Program
- Distance courses between UW and Microsoft

Masters class, UW - Pakistan

- Masters class
 - University of Washington
 - Lahore University of Management Science
 - Microsoft
- Computing for the Developing world

3-way setup for UW, MS, LUMS

Classroom Activities

- Recorded lecture materials
 - Generally based on live classes
- Class model
 - Lecture playback alternating with facilitator led discussion
- Facilitation models
 - Gibbons: Peer instruction
 - Active facilitation
UW-Beihang, Algorithms course

- Offer course based on UW course in Beijing
- UW Instructor could not give the course in Beijing
- Scheduling prevented live course offering
 - 1:30 pm Seattle, 4:30 am Beijing
 - Materials captured from live classes
- Tutored Video Instruction
 - Slides, talking head, digital ink

Facilitation

- Support provided for facilitators
 - Lecture notes
 - Activities
- Facilitators invested a larger effort in preparation
 - Studying videos
 - Planning how to cover content
- Active facilitation
 - Worked through lecture examples
 - Led activities
 - Asked questions to students

Classroom Activities

- Tablet PC supported activities
 - Student submission model
 - Used for every lecture
- Technology generally successful
- Considered very positive by students
 - High rate of participation
- Provided a structure for active learning

Classroom Environment

- Contrast to traditional large lecture class
- Highly interactive class
 - Interaction episodes measured by observation logs and videos of Beihang classes
 - Average of 13 interaction episodes per class, 10 with students speaking
 - UW class averaged about 20 interaction episodes per equivalent length of time
 - Beihang episodes averaged a greater number of rounds of communication
- Class atmosphere was informal

Results

- Offering successful
 - Technology, institutional relationship
- Cross-cultural issues
 - English language materials were comprehensible
 - Classroom discussion primarily in Chinese
- Facilitation model
 - Significant support for facilitators
 - Classroom activities successful (and popular)
 - Facilitators innovative and reproduced some of the instruction
 - Interactive and informal classroom atmosphere

Elementary School

- Classroom visits with Tablet PCs
- Seattle Public School
 - 4th grad
 - After school math club
- Massachusetts Public Schools
 - Kimberle Koile
 - Classroom Learning Partner
Introductory activity

Sample Math Problems

Sample Math Problems

Classroom Learning Partner

School Summary

Classroom Presenter: Going Forward

• Activity model worked very well
• Positive Aspects
 – Student engagement
 – Showing work on public display
 – Visible process
• Negatives
 – Student distraction, excessive drawing
 • Feature request – limit access to highlighter
 • Students master technology instantly
 – Teachers may take longer
 • Fits naturally with elementary school pedagogy
• Technology must be robust and easy to use

• Distribution Model – Academic Freeware
• Establish Electronic Classroom Initiative
 – Consortium of industrial and educational institutions
 – Advisory board
• Classroom Presenter 4
 – Improve performance (scale to large classes)
 – Cross device compatibility
 – Platform for others to extend (open source)
 – Expand to K-12
For more information

- Richard Anderson
 - anderson@cs.washington.edu
- Fred Videon
 - fred@cs.washington.edu
- Center for Collaborative Technologies
 - cct.cs.washington.edu
- Classroom Presenter
 - classroompresenter.cs.washington.edu

Acknowledgements

- Support from Microsoft Research, National Science Foundation, HP, Ford, UW CSE